@° PLOS | ONE

Check for
updates

G OPEN ACCESS

Citation: Boehler JF, Hogarth MW, Barberio MD,
Novak JS, Ghimbovschi S, Brown KJ, et al. (2017)
Effect of endurance exercise on microRNAs in
myositis skeletal muscle—A randomized
controlled study. PLoS ONE 12(8): e0183292.
https://doi.org/10.1371/journal.pone.0183292

Editor: Elena Cavarretta, Universita degli Studi di
Roma La Sapienza, ITALY

Received: October 18,2016
Accepted: July 12, 2017
Published: August 22, 2017

Copyright: © 2017 Boehler et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All microarray files
are available from the GEO database (Accession
Numbers: GSE95735 (microRNA), GSE95772
(mRNA)).

Funding: KN is supported by the National Institutes
of Health (5U54HD053177, K260D011171,
P50AR060836-01, 2R24HD050846-06), the
Muscular Dystrophy Association, and the US
Department of Defense (W81XWH-05-1-0616,
W81XWH-11-1-0782, W81XWH-11-1-0330). IL
was supported by the Myositis Association, the

RESEARCH ARTICLE

Effect of endurance exercise on microRNAs in
myositis skeletal muscle—A randomized
controlled study

Jessica F. Boehler'2, Marshall W. Hogarth', Matthew D. Barberio', James S. Novak’,
Svetlana Ghimbovschi', Kristy J. Brown'?2, Li Alemo Munters?, Ingela Loell®, Yi-

Wen Chen'?, Heather Gordish-Dressman', Helene Alexanderson®, Ingrid E. Lundberg®,
Kanneboyina Nagaraju’-2**

1 Research Center for Genetic Medicine, Children’s National Health System, Washington, D.C., United
States of America, 2 Department of Integrative Systems Biology, Institute for Biomedical Sciences, The
George Washington University, Washington, D.C., United States of America, 3 Rheumatology Unit,
Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden,
4 Departement of Pharmaceuticals Sciences, School of Pharmacy and Pharmaceuticals Sciences,
Binghamton University, Binghamton, New York, United States of America

* nagaraju @binghamton.edu

Abstract

Objective

To identify changes in skeletal muscle microRNA expression after endurance exercise and
associate the identified microRNAs with mRNA and protein expression to disease-specific
pathways in polymyositis (PM) and dermatomyositis (DM) patients.

Methods

Following a parallel clinical trial design, patients with probable PM or DM, exercising less
than once a week, and on stable medication for at least one month were randomized into
two groups at Karolinska University Hospital: a 12-week endurance exercise group (n = 12)
or a non-exercised control group (n = 11). Using an Affymetrix microarray, microRNA
expression was determined in paired muscle biopsies taken before and after the exercise
intervention from 3 patients in each group. Ingenuity pathway analysis with a microRNA tar-
get filter was used to identify microRNA transcript targets. These targets were investigated
at the mRNA (microarray) and protein (mass spectrometry) levels in patients.

Results

Endurance exercise altered 39 microRNAs. The microRNAs with increased expression
were predicted to target transcripts involved in inflammatory processes, metabolism, and
muscle atrophy. Further, these target transcripts had an associated decrease in mRNA
expression in exercised patients. In particular, a decrease in the NF-kB regulator IKBKB
was associated with an increase in its target microRNA (miR-196b). At the protein level,
there was an increase in mitochondrial proteins (AK3, HIBADH), which were associated
with a decrease in microRNAs that were predicted to regulate their expression.
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Conclusion

Improvement in disease phenotype after exercise is associated with increasing microRNAs
that target and downregulate immune processes at the transcript level, as well as decreas-
ing microRNAs that target and upregulate mitochondrial content at the protein level. There-
fore, microRNAs may improve disease by decreasing immune responses and increasing
mitochondrial biogenesis.

Trial registration
ClinicalTrials.gov NCT01184625

Introduction

Inflammatory myopathies, collectively known as myositis, are a group of heterogeneous rheu-
matic disorders characterized by chronic muscle weakness and fatigue [1, 2]. The pathology is
characterized by extensive inflammation but also includes signs of skeletal muscle damage
such as central nucleation, variation in fiber size, fibrosis, and fiber atrophy. Although its
underlying cause is currently unknown, myositis is thought to be autoimmune in origin, given
the presence of autoantibodies in more than 50% of patients [3]. Since these disorders involve
both muscle and immune responses, anti-inflammatory and immunosuppressive drugs are
currently used for treatment. In particular, glucocorticoids are an effective treatment because
they target both the muscles and the immune system [4]. However, they have substantial side
effects, such as muscle fiber atrophy, that can lead to further muscle damage when taken in
large doses or for extended periods of time [5].

During the past decade, exercise has been recognized as an effective anti-inflammatory
intervention in many chronic diseases [6]. It is well known that both skeletal muscle and
immune pathways are altered by exercise [7]; therefore, exercise as a therapy is particularly rel-
evant to myositis. Recent studies have shown that both resistance and aerobic exercise are well
tolerated by polymyositis (PM) as well as dermatomyositis (DM) patients and may be used as a
therapeutic intervention to improve disease outcomes. Resistance exercise training for 7 weeks
has been shown to increase muscle strength, decrease levels of serum creatine kinase, and
improve myositis intention-to-treat activity index (MITAX) scores when compared to baseline
measurements [8]. At the molecular level, global gene expression microarrays show reductions
in pro-inflammatory and profibrotic gene networks [9]; however, these changes are not
observed at the histological level, in part because the inflammation does not occur evenly
throughout myositis muscle and because there is a poor correlation between the degree of
inflammation and the severity of symptoms [8, 10].

In addition to resistance exercise, endurance exercise training for 12 weeks has also been
shown to provide functional benefit. Exercised patients have reduced disease activity, accord-
ing to the International Myositis Assessment and Clinical Studies Group (IMACS) score, as
well as increases in aerobic capacity (VO, max) and muscle fatty acid B-oxidation [11]. Analy-
sis of the transcript and protein profiles in these patients indicated improvements in oxidative
phosphorylation, mitochondrial biogenesis, and angiogenesis, with concomitant reductions in
inflammatory and atrophy-related signaling [12]. However, the upstream mechanisms, such as
microRNAs, that regulate changes in gene expression in the muscle are unknown.
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MicroRNAs, which are small non-coding RNA molecules, are important regulators of gene
expression at the post-transcriptional level and function by either inhibiting translation or
degrading transcripts once they are bound to a specific seed sequence located in target mRNA.
MicroRNAs can target numerous transcripts and have been implicated in the pathogenesis of
several rheumatic diseases, including systemic lupus erythematosus and rheumatoid arthritis
[13]. In skeletal muscle, microRNAs have been shown to be important during myogenic differ-
entiation [14], and their dysregulated expression has been found in inflammatory myopathies
[15]. In particular, pro-inflammatory cytokines have been shown to suppress the expression
of microRNAs that are important for muscle differentiation and maintenance, connecting
chronic inflammation with muscle degeneration in myositis [16]. The presence of pro-inflam-
matory cytokines in myositis is partially attributed to activation of the nuclear transcription
factor NF-xB [17], which is expressed by both muscle and immune cells and is targeted by glu-
cocorticoids. Therefore, we hypothesized that exercise improves the disease phenotype by
altering the expression of microRNAs that target both muscles and immune processes.

Methods
Study design

The data collected here are part of a larger randomized, controlled parallel trial evaluating the
effect of endurance exercise in myositis skeletal muscle at the Karolinska University Hospital
in Stockholm, Sweden titled ‘Physical Exercise as a Targeted Therapy in Patients with Chronic
Rheumatic Muscle Disease’ (For full trial protocol, see S1 File) [11, 12] (ClinicalTrials.gov
Identifier: NCT01184625). The study followed the World Medical Association’s 2008 Declara-
tion of Helsinki. All participants gave written informed consent to participate in the study,
which was approved by the local ethics committee at Karolinksa University Hospital, Sahl-
grenska University Hospital and Uppsala University Hospital. The study was approved in
August 2006 and February 2009 by the ethics committee. Patient recruitment began in January
2008, the trial was registered with ClinicalTrials.gov in August 2010, and evaluations were per-
formed until August 2012. The authors confirm that all ongoing and related trials for this
intervention are registered.

The inclusion criteria included a diagnosis of definite or probable PM or DM for at least 6
months [18, 19], exercising less than once a week, and being on stable medication for at least
one month. Patients who were unable to exercise or had severe heart or lung conditions were
excluded. Patients were randomized into a control/non-exercise group or an exercise group
using a randomization list by an independent nurse [11]. The exercise group performed a 1-hr
endurance exercise training program three times a week for 12 weeks as previously described
[11]. Muscle biopsies from the vastus lateralis muscle were taken at baseline and after the
12-week training period from both groups under local anesthesia using a semi-open biopsy
technique [20]. Tissue (10-80 mg) was taken at different angles in the same incision, immedi-
ately frozen in liquid nitrogen-cooled isopentane, and stored at -70°C. De-identified biopsies
for molecular analysis were received at Children’s National Medical Center (Washington, DC,
USA) under IRB exemption.

Since this study was part of a larger clinical trial examining the benefit of exercise in myosi-
tis patients, a total of only three patients were available for analysis. Despite our low sample
size, the study was internally controlled, which is important when studying a highly heteroge-
neous disease with a variable phenotype. Further, although transcriptome and proteome pro-
files have already been previously published using a larger cohort of patients [12], we repeated
both the mRNA microarray using a different platform (i.e. Illumina instead of Affymetrix) and
the proteomics using a different approach (i.e. SuperSILAC instead of isobaric mass tagging)
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in our smaller cohort. These datasets have been uploaded into GEO (Accession Numbers:
GSE95735 (microRNA), GSE95772 (mRNA)).

RNA isolation

Total RNA was isolated from the vastus lateralis muscle at baseline (pre-) and after 12 weeks
(post-) of both exercised (n = 3) and control (n = 3) myositis patients using the mirVana™
miRNA Isolation Kit (Applied Biosystems/Ambion, Austin, TX, USA) according to the manu-
facturer’s protocol. The concentration of each RNA sample was determined by a NanoDrop ™
spectrophotometer ND-1000 (NanoDrop Technologies, Wilmington, DE, USA), and the qual-
ity of the RNA samples was assessed with an Agilent 2100 Bioanalyzer (Agilent Technologies
Inc., Santa Clara, CA, USA).

Expression profiling

High-quality total RNA (175 ng) was used for both mRNA and microRNA expression profil-
ing. For mRNA gene expression, samples were analyzed using Illumina®™ Gene Expression
BeadChip Array technology (Illumina, Inc., San Diego, CA, USA). Reverse transcription for
the first cDNA strand and synthesis of the second cDNA strand, followed by a single in vitro
transcription (IVT) amplification that incorporated biotin-labeled nucleotides, was performed
with an Illumina® TotalPrep™ -96 RNA Amplification Kit (Ambion, Austin, TX, USA). Bio-
tin-labeled IVT product (cRNA, 750 ng) was hybridized to the HumanHT-12v4_BeadChip
(Illumina, Inc., San Diego, CA, USA) for 16 hr, followed by washing, blocking, and streptavi-
din-Cy3 staining according to the Whole-Genome Gene Expression Direct Hybridization pro-
tocol (Illumina, Inc., San Diego, CA, USA). The arrays were scanned using a HiScanSQ
System, and the decoded images obtained were analyzed by the GenomeStudio™ Gene Expres-
sion Module, which is an integrated platform for data visualization and analysis (Illumina,
Inc., San Diego, CA, USA). For microRNA expression, samples were analyzed using the Affy-
metrix GeneChip (Affymetrix, Santa Clara, CA, USA). Total RNA samples, containing low
molecular weight RNA, were biotin-labeled with the FlashTag™ Biotin HSR RNA Labeling Kit
(Genisphere LLC, Hatfield, PA, USA). The quality of the biotin labeling process was confirmed
by using an enzyme-linked oligosorbent assay (ELOSA) (Genisphere LLC, Hatfield, PA, USA).
Each high-quality biotin-labeled microRNA sample (21.5 ul) was hybridized to an Affymetrix
Gene-Chip™ miRNA 3.0 Array for 16 hr according to the Affymetrix protocol. The arrays
were washed and stained on an Affymetrix Fluidics Station 400 and scanned with a Hewlett
Packard G2500A Gene Array Scanner. The Affymetrix™ miRNA QC Tool v 1.1.1.0 (Affyme-
trix, Santa Clara, CA, USA) was used for data summarization and microarray quality control.

Data analysis

mRNA expression values were generated in GenomeStudio and automatically uploaded (plug-
in) into Partek software (Partek Incorporated, St. Louis, MO, USA) for statistical analysis and
data visualization. Expression values were normalized using Robust Multi-array Average [21],
log,-transformed. In addition, Genome Studio Final Report Table was used in Hierarchical
Clustering Explorer 3 (HCEv3) for probe-set filtering, power analysis, and chip-based unsu-
pervised clustering [22]. To generate microRNA expression values, Affymetrix GeneChip-
derived CEL intensity files were analyzed using the Affymetrix Expression Console Summari-
zation Probe set algorithm for microRNA -RMA+detection above the background (DABG).
The gene expression values were filtered based on average signal values, and only microRNAs
with average signal values >20% were accepted for further analysis.
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Statistics and microRNA transcript pairing

[Mlumina GenomeStudio™-derived mRNA probe set signal intensity values (RMA normalized
and log,-transformed) as well as microRNA probe sets after RMA+DABG and filtering were
used in Partek Genomics Suite, version 6.5 (Partek, St. Louis, MO, USA) for determining dif-
ferently expressed genes, statistics, and data visualization analysis. For the microRNA data set,
post-biopsy values were normalized by subtracting the pre-biopsy values. An unequal variance
t-test was used to identify transcripts and microRNAs of potential interest. Nothing exceeded
the false discovery rate (FDR), so expression values with p<0.01 were considered for the fur-
ther analysis of the microRNA data, while a p<0.05 was the cutoff for the mRNA data set.

To identify microRNA transcript targets, the Ingenuity Pathways Analysis (IPA) (Ingenuity
Systems Inc., Redwood City, CA, USA) MicroRNA Target Filter was used to identify tran-
scripts targeted by changed microRNAs. Partek was used to identify probeset IDs associated
with the microRNA target genes. Statistics, as described for microRNA identification, were
run on the microRNA target genes, and data were filtered to include only mRNA-microRNA
interactions that showed expression pairings with changes in opposite directions.

MicroRNA validation using RT-gPCR

Total RNA (50ng) was reverse-transcribed using the High-Capacity cDNA Reserve Transcrip-
tion Kit (Thermo Fisher Scientific, Waltham, MA, USA) with the random primer mix
substituted with RT primers for hsa-miR-196b (002215) and U47 (001223) (Thermo Fisher
Scientific, Waltham, MA, USA). Cycling parameters started with 30 minutes at 16°C, followed
by 30 minutes at 42°C, and ended with 5 minutes at 85°C. Approximately 8ng of cDNA was
pre-amplified using the Tagman PreAmp Master Mix (Thermo Fisher Scientific, Waltham,
MA, USA) following manufacturers protocol with the above primers listed. Amplified cDNA
(0.2ng) was loaded in triplicate and run on the 7900HT Fast Real-Time PCR system (Thermo
Fisher Scientific, Waltham, MA, USA). Pre Ct values were subtracted from post values for nor-
malization and quantification was performed using the AACt method (2A-((Normalized Tar-
get-Housekeeper)-(Average(Normalized Control-Housekeeper)).

Proteomics

Total protein was extracted from frozen paired (pre- and post-) biopsies from the exercise
group using radioimmunoprecipitation assay buffer (RIPA) buffer (50 mm Tris-HCI, pH 8.0,
with 150 mM sodium chloride, 1.0% Igepal CA-630 (Nonidet P-40), 0.5% sodium deoxycho-
late, and 0.1% sodium dodecyl sulfate) (Teknova, Hollister, CA, USA) containing protease
inhibitors (Halt protease inhibitor mixture 100X;Thermo Fisher Scientific, Waltham, MA,
USA). Protein concentrations were estimated using the Bio-Rad Microplate Protein Assay
(Bio-Rad, Hercules, CA, USA) according to the manufacturer’s protocol.

Approximately 30 pg of each sample RIPA extract was mixed 1:1 with RIPA protein extract
from SILAC human myotubes. The SILAC myotubes served as a SuperSILAC internal stan-
dard [23], with all lysine residues being replaced with '*Cg,'°N,-lysine and all arginine residues
replaced with °Cg-arginine. Samples underwent detergent removal (Thermo Pierce, Waltham,
MA, USA) and tryptic digestion using SmartDigest (Thermo Fisher, Waltham, MA, USA) at
70°C and 1400 rpm for 1.5 hr. The resulting peptides were acidified with 0.1% TFA and frac-
tioned into 8 fractions on high pH reversed-phase spin columns (Thermo Fisher, Waltham,
MA, USA). Peptide fractions were dried by vacuum centrifugation and resuspended in 20 pL
0f 0.1% formic acid and 2% acetonitrile. Each sample (3 pL) was analyzed by top 10 data-
dependent LC-MS/MS on a Thermo Q Exactive mass spectrometer coupled online to a
NanoEasy Nano-LC 1000 with the following parameters: positive polarity, m/z 400-2000, MS
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resolution 70,000, AGC 3e6, 100ms IT, MS/MS resolution 17,500, AGC 2e5, 60ms IT, isolation
width 3 m/z, and NCE 27, underfill 10%, unassigned and +1 ions excluded, peptide match pre-
ferred, isotope exclusion on, dynamic exclusion 25s, LC solvents A: 0.1% formic acid with 2%
acetonitrile, B: 100% acetonitrile; precolumn: Thermo Acclaim Pepmap 100 75-pm x 2-cm
C18 3-um 100 A (Thermo Fisher, Waltham, MA, USA); analytical column: Thermo Pepmap
RSLC C18 75 pm x 50 cm 100A (Thermo Fisher, Waltham, MA, USA), precolumn equilibra-
tion 6 pL at 800 Bar, analytical column equilibration 6 pL at 980 Bar, sample loading 8 uL at
980 Bar; gradient 0%-35% B in 32 min, hold for 2 min, then to 100% B and hold for 10 min.
The resulting MS files were searched using the Comet search engine in IP2 software (Inte-
grated Proteomics Pipeline v.3) against the UniProt human database (2014_09, 20,193
reviewed entries) with the following parameters: 2 missed cleavages, partially tryptic, 20-ppm
mass accuracy, potential modification of lysine 8.0142 Da, potential modification of arginine
6.0201 Da, and a peptide false-discovery rate of 0.05. Census software version 2014.01 rev. 1,
built on the IP2 platform, was used to determine the ratios of unlabeled and labeled peptide
pairs using an extracted chromatogram approach. The distribution of ratios was plotted and
correction factors applied to adjust for any error in sample mixing. Data were checked for
validity by using a regression correlation of better than 0.5 for each peptide pair. A ratio of
light/heavy for each protein in each sample was generated and then, using the SuperSILAC
approach, the ratio of the pre- and post-samples for each patient was determined. Using this
approach, the SILAC standard cancels out to reveal the protein alteration resulting from exer-
cise. Altered proteins were determined using a fold change cut-off of 1.5 and a total peptide
count of > =2.

Western blot

Total protein lysate (20ug) extracted from pre and post exercised muscle were separated on a
4-12% Bis Tris gel (Thermo Fisher Scientific, Waltham, MA, USA) and transferred for 2 hours
at 4°C onto nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Membranes were
blocked for 1 hour using 5% BSA in TBS-0.1% Tween and incubated overnight at 4°C with
IxBo (L35A5) mouse monoclonal antibody (1:1000; Cell Signaling Technology, Danvers, MA,
USA). Membranes were then washed with TBS-0.1% Tween and probed with anti-mouse IgG,
HRP-linked antibody (1:5000; Cell Signaling Technology, Danvers, MA, USA) for 1 hour. ECL
chemi-luminescence substrate (Bio-Rad, Hercules, CA, USA) was used to develop blot on Che-
miDoc Touch Imaging System (Bio-Rad, Hercules, CA, USA) using the optimal exposure set-
tings. Densitometry analysis was carried out using Image ] and ratios of the optical density
were normalized to the corresponding loading control (anti-vinculin, 1:1000, Abcam Inc,
Cambridge, MA, USA).

Results
Study design and patient demographics

To characterize exercise-induced microRNAs in myositis muscle, we made use of samples
from PM and DM patients participating in a controlled, randomized trial that examined the
benefit of endurance exercise at The Karolinska University Hospital in Stockholm, Sweden
([11], ClinicalTrials.gov Identifier: NCT01184625). These studies have previously shown that
endurance exercise benefits PM and DM patients [11, 12]. To better understand the molecular
pathways that contribute to exercise-induced benefits, we used muscle biopsies from a subset
of patients for the microRNA analysis described here [11].

Patients were randomized into two groups: an exercised and a non-exercised group (Figs 1
and 2A). All the patients were female, except for one male in the non-exercised group. Each
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J
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Fig 1. CONSORT 2010 flow diagram. The flow chart depicts the numbers of participants who were randomly
assigned, exercised, and were analyzed for study.

https://doi.org/10.1371/journal.pone.0183292.9001

group was composed of one dermatomyositis and two polymyositis patients. The mean age of

the exercised group was 63 years, and the average length of disease duration since diagnosis

was 1.67 years. The mean age of the control group was 51 years, and the average length of dis-

ease duration since diagnosis was 15 years. All patients were on a stable regimen of medication
for at least one month prior to the start of the trial. During the trial, all patients were taking
prednisone in combination with azathioprine, methotrexate, or mabthera.
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HumanHT-12 v4 Normalize to baseline 1.649 altered IPA
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) i transcripts —> .
Identification of BeadChip t-test forunequal variance Pairing
significantly altered Microarray
predicted target genes
( D) 7 exercise-induced microRNAs
expression paired to
. . 97 predicted transcripts that were altered after exercise
IPA expression pairing of
microRNA and mRNA
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and —> Mass —>  directional T) paired to
. ilter for .
Expression pairing of pmojstcle Spectrometry fold change in opposite 4 proteins
microRNA and protein all patients expression

Fig 2. Overview of the data analysis of exercised and non-exercised myositis patients. The above work plan was used to
the identify exercised-induced microRNA interactions in myositis patients. (A) Total RNA was extracted from baseline (pre) and
exercised (post) muscle biopsies from the exercise group and the control group. (B) After pre values were subtracted from post
values as an internal control measure, a total of 39 microRNAs were identified. Ingenutiy Pathway Analysis (IPA) MicroRNA
Target Filter identified that 8 of these microRNAs had predicted transcript targets. (C) A gene expression microarray was run to
identify if any of these transcript targets were altered in the patients after exercise. (D) Expression pairing between the microRNA
and mRNA data sets was performed using IPA to determine biological relevance. (E) Protein was extracted from pre and post
exercised muscle for SuperSILAC mass spectrometry. Expression pairing was again performed with microRNA and protein data
sets since microRNAs are known to inhibit translation.

https://doi.org/10.1371/journal.pone.0183292.9002

Identification of exercise-induced microRNAs and predicted target gene
transcripts

First, the data were internally controlled by subtracting out the baseline or the values obtained
from the pre muscle biopsy (i.e. post values—pre values). Statistical analysis was then performed
with Partek Genomics Suite, version 6.5 (Partek, St. Louis, MO, USA). To control the false-
discovery rate associated with statistical analysis of microarray data, p-values adjusted for mul-
tiple corrections were first obtained. This calculation resulted in no significantly altered micro-
RNAs. To obtain a useable dataset, data were filtered to include microRNAs that met two of
the following conditions: fold change >|1.2| and p<0.01., Filtering identified 39 microRNAs
(S1 Table and Fig 2B). IPA mapped 54% (21/39) of these microRNAs (Table 1), whereas the
remaining 36% are currently un-annotated and were therefore excluded from further analysis.
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Table 1. Exercise-induced microRNAs.

Transcript ID Fold Change (Exercise (n = 3) vs. Control (n = 3)
hsa-miR-376a-star -1.6
hsa-mir-3689d-2 1.7
hsa-miR-182 1.3
hsa-mir-630 1.3
hsa-mir-30c-2 1.2
hsa-mir-744 -1.2
hsa-mir-2114 -1.2
hsa-mir-4640 1.3
hsa-miR-2467-5p 1.4
hsa-miR-2278 1.3
hsa-miR-3713 -1.2
hsa-miR-196b 1.6
hsa-mir-3191 1.5
hsa-mir-3654 1.4
hsa-mir-548am -1.3
hsa-miR-582-5p -1.3
hsa-mir-3166 1.5
hsa-mir-133b -1.4
hsa-miR-548d-5p -1.5
hsa-mir-609 1.4
hsa-mir-4295 1.5

https://doi.org/10.1371/journal.pone.0183292.t001

To identify transcript targets, we used IPA’s MicroRNA Target Filter because it pulls pre-
dicted gene targets from multiple databases and allows for prioritization of experimentally vali-
dated interactions. IPA’s MicroRNA Target Filter predicted 4,283 gene targets from 32% (8/
25) of the mapped microRNAs (S2 Table).

Identification of altered predicted target gene transcripts after exercise

To identify if any of the predicted 4,283 gene targets from the mapped microRNAs were
altered after exercise in our cohort of patients, an Illumina gene expression microarray was
run and altered transcripts were determined using the same analysis for identification of exer-
cise-induced microRNAs with the exception of the cut off for the p value (Fig 2C). To deter-
mine biologically meaningful interactions, microRNA-mRNA pairs were filtered based on
expression pairing (Fig 2D). This analysis identified 7 exercise-induced microRNAs with 97
predicted transcript targets displaying a fold change in the opposite direction from that of
their matched microRNAs (Table 2). Further, pulling from IPA’s compiled literature database,
thirty-two of these transcript targets had previously been documented to participate in over
400 various signaling pathways (53 Table).

Identification of altered predicted target genes at the protein level after
exercise

To determine how exercise-induced microRNAs affect expression at the protein level, global
mass spectrometry using the SuperSILAC approach was performed on muscle from the exer-
cised patients (Fig 2E) [23]. Altered proteins were filtered to only include those with a fold
change in the same direction in all three patients after exercise (S4 Table). This analysis resulted
in 44 proteins that were changed after endurance exercise. These proteins were then compared
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Table 2. Overview of microRNA expression pairing with mRNA and proteomic data sets.

Transcript ID Seed Fold Change (Exercise Total predicted Transcripts altered due to Proteins altered due to

Sequence (n=3) vs. Control (n=3) transcript targets transcript degradation translational repression
hsa-miR-376a-star UAGAUUC -1.65 176 1 1
hsa-miR-182 UUGGCAA 1.3 1164 44 0
hsa-miR-2467-5p GAGGCUC 1.38 840 17 0
hsa-miR-2278 AGAGCAG 1.31 374 12 0
hsa-miR-196b AGGUAGU 1.59 611 17 0
hsa-miR-582-5p UACAGUU -1.32 558 4 1
hsa-miR-548d-5p AAAGUAA -1.52 429 2 3
hsa-miR-3713 GUAUCCG -1.2 131 0 1

To determine biological function, we used IPA’s canonical pathway analysis and found that microRNA-mRNA expression pairs were involved in pathways
affecting immune response, capillary growth, muscle metabolism, and muscle atrophy (Table 3).

https://doi.org/10.1371/journal.pone.0183292.t1002

to IPA’s MicroRNA Target Filter Function (Fig 2B) to determine if any of the proteins were pre-
dicted to be microRNA targets. Expression pairing revealed that 9% (4/44) of the altered pro-
teins were predicted microRNA targets (Table 2). To determine biological function, we again
pulled from IPA’s compiled literature database for pathway identification. Altered proteins that

Table 3. Pathway analysis of expression-paired microRNA-mRNA alterations in exercised patients.

ID Fold Change (Exercise (n = 3) ID Fold Change (Exercise (n = 3) | IPA Identified Pathway Function
vs Control (n =3) vs Control (n =3)

hsa-miR-182 1.304 BCL2 -1.5 PEDF Signaling Anti-angiogenic, Immune
BDNF 15 response
GDNF -1.2
PIK3R1 -1.3

hsa-miR-196b 1.595 IKBKB -1.5
GDNF -1.2

hsa-miR-2467-5p 1.379 GDNF -1.2

hsa-miR-182 1.304 CREB1 -2.3 PI3K Signaling in B Immune response
ATE7 1.2 Lymphocytes
PIK3R1 -1.3

hsa-miR-196b 1.595 IKBKB -1.5

hsa-miR-182 1.304 TNFSF14 -1.7 Lymphotoxin B Receptor Immune response
PIK3R1 1.3 Signaling

hsa-miR-196b 1.595 IKBKB -1.5

hsa-miR-182 1.304 KDELR1 -1.7 Protein Kinase A Glucose, Protein, and
PDE7A 18 Signaling Lipid Metabolism
CREB1 2.3
ADD3 -1.1

hsa-miR-2467-5p 1.379 PPP1R1B -1.6

hsa-miR-182 1.304 CREB1 -2.3 Glucocorticoid Receptor | Muscle atrophy, Immune
BCL2 15 Signaling response
PIK3R1 -1.3

hsa-miR-196b 1.595 IKBKB -1.5

hsa-miR-2278 1.308 SUMO1 -1.5

https://doi.org/10.1371/journal.pone.0183292.t003
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Table 4. Pathway analysis of expression-paired microRNA-protein alterations in exercised patients.

ID Fold Change (Exercise
(n =3) vs Control (n =3)
hsa-miR- -1.19
3713
hsa-miR- -1.52
548d-5p
hsa-miR- -1.52
548d-5p
hsa-miR- -1.52
548d-5p
hsa-miR- -1.65
376a-star
hsa-miR- -1.32
582-5p

https://doi.org/10.1371/journal.pone.0183292.1004

Symbol | Fold Change (Exercise IPA Identified Pathway Function
(n =3) vs Control (n =3)
AK3 1.86 AMPK Signaling Mitochondrial

biogenesis [24]

APEX1 2.697 BER pathway, cAMP-mediated, 3-adrenergic, Protects against
HIF1q, Protein Kinase A, and Relaxin oxidative stress [25]
Signaling
HIBADH 1.972 Valine Degradation | Mitochondrial
biogenesis [24]
CAP2 1.758 Actin binding, Muscle

remodeling [25]

were associated with changes in their respective target microRNAs were involved in pathways
affecting mitochondrial biogenesis, oxidative stress, and muscle remodeling (Table 4).

Increased expression of miR-196b after exercise is associated with
increases in total IkBa protein

To further explore how microRNA may mediate disease improvements, we chose to focus on
the microRNA-mRNA pair, miR-196b and IKBKB for several reasons. First, NF-xB activation,
which is a known regulator of skeletal muscle inflammation in myositis, occurs downstream of
IKBKB, which transcribes the beta subunit (IKK-p) for the IKK enzyme complex. Second,
IKBKB is essential for classical NF-kB signaling, which induces proinflammatory cytokine pro-
duction. Third, when filtering for experimentally validated interactions using the IPA filter
(i.e. previously published studies showing regulation using a luciferase assay, RT-qPCR), miR-
196b and IKBKB remain. Our expression-pairing analysis concluded that increases in miR-
196b were associated with decreased expression of known transcript target IKBKB in patients
after exercise.

We first validated that miR-196b was increased after exercise by using another method, RT-
qPCR, to measure microRNA expression (Fig 3A). To determine if increased miR-196b
expression was associated with decreases in classical NF-kB signaling, we immunoblotted for
total IxBa protein. IxBo functions as an inhibitor of NF-«xB by keeping NF-«B in its inactive
state through sequestration within the cytoplasm and blocking its ability to bind to DNA. Fur-
ther, IxBo. protein levels are regulated through degradation induced by IKK-B (IKBKB). We
found a variable response in total IkBa. protein between patients before and after exercise.
Averaged total protein levels showed a trend towards increasing after exercise (Fig 3C), sug-
gesting less degradation of IxkBa and attenuated classical NF-xB signaling.

Discussion

Exercise has been shown to enhance skeletal muscle function by increasing strength and con-
tractility and reducing negative effects (i.e., oxidative stress, inflammation) associated with
muscle disease [7]. Since exercise directly targets the muscle, myositis patients were tradition-
ally advised not to exercise out of fear for exacerbating existing muscle damage and inflamma-
tion. However, substantial evidence has shown that a consistent exercise regimen exerts anti-
inflammatory effects and may be beneficial to individuals with multiple chronic inflammatory

PLOS ONE | https://doi.org/10.1371/journal.pone.0183292  August 22, 2017 11/17


https://doi.org/10.1371/journal.pone.0183292.t004
https://doi.org/10.1371/journal.pone.0183292

@° PLOS | ONE

MicroRNA alterations in exercised myositis patients

A

miR-196b
25 -
gg 20 4 |
o)
% E 15
E’E 1.0 -
0.5 -
>
<
0.0 - T
Exercise
s 15
PRE POST o < +42%
5 e
1 2 1 2 i E 10
o
IkBat RR— - 55_» §
(o]
L5 59
Vinculin — — — — 2 g
®Z
& 0 L) T
pre post

Fig 3. Validation of miR-196b expression after exercise and its associated effect on classical NF-kB signaling. (A) RT-
gPCR validated that miR-196b was increased after exercise. For normalization, pre Ct values were first subtracted from post Ct
values from both miR-196b and the housekeeper, U47. Double delta Ct method was then used to calculate the average fold
change (27-((Normalized Target-Housekeeper)-(Average(Normalized Control-Housekeeper)). (B) Western blot in pre-and post
exercised skeletal muscle shows an average increase of 42% in total IkBa protein after exercise.

https://doi.org/10.1371/journal.pone.0183292.9003

conditions [6]. In myositis, exercise provides clinical benefit and is an attractive therapy
because it non-invasively targets skeletal muscle with relatively few to no side effects [8, 9, 11,
12]. Previous studies have tried to link clinical improvements with underlying molecular
mechanisms; however, these studies have only examined global gene and protein changes [12].
Currently, there are no studies that examine how exercise affects potential genetic regulators,
such as microRNAs. This is the first study that has tried to integrate exercise-induced micro-
RNA alterations with subsequent target gene and protein expression.

One of the major issues in studying rare neuromuscular diseases is the heterogeneity of the
patient population. A main strength of this study is the experimental setup in which skeletal
muscle was taken from paired muscle biopsies of myositis patients before and after an aerobic
exercise intervention. This controlled for the wide variability seen in the disease phenotype
since each patient was normalized to its baseline level. Additionally, there are two previously
published studies using larger, separate cohorts of endurance exercised patients so we were
able to use an evidence-based approach by cross-referencing both array and functional data
[26]. Since our cohorts were different, we repeated both transcriptomics using a different
platform (Illumina instead of Affymetrix) and proteomics using a different approach (SuperSI-
LAC instead of isobaric mass tagging). We hypothesized that microRNAs regulate processes
involved in the both the muscles and the immune system. Specifically, we found that exercise
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Fig 4. Exercise induces microRNAs that target transcripts and proteins important for muscle and immune response. Exercise-
induced microRNAs help improve disease outcomes in myositis by modulating transcripts and proteins important for aerobic metabolism,
immune response, and muscle atrophy.

https://doi.org/10.1371/journal.pone.0183292.9004

induced the expression of microRNAs that targeted mRNA transcripts as well as proteins
involved in suppressing inflammation, promoting muscle growth, and improving aerobic
respiration in skeletal muscle after a 12-week endurance-exercise intervention in myositis
patients (Fig 4). Our findings suggest that exercise-induced microRNAs help to regulate the
genetic, proteomic, and functional benefits previously reported [11, 12].

Pathway analysis of exercise-induced changes in microRNA revealed that exercise-induced
microRNAs primarily down-regulate transcripts involved in immune response, glycolytic
metabolism, and muscle atrophy. This suggests that skeletal muscle inflammation is partially
regulated by microRNAs in myositis. To further explore this, we used targeted gene expression
analysis and found that IKBKB mRNA was reduced following exercise training, in accordance
with increased mir-196b expression (Table 3). IKBKB is an upstream modulator of NF-kB and
assists in its translocation to the nucleus by marking NF-kB inhibitors (IxBa) for degradation
by proteosomes. When compared to normal muscle, myositis muscle shows activated NF-xB
translocation to the nucleus, as well as increases in NF-«B target genes [17]. Interestingly, the
majority of the identified transcriptional pathways have been shown to regulate NF-xB
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signaling [27, 28]; therefore, we focused on further study of the microRNA-mRNA pair, miR-
196b and IKBKB.

Although we confirmed that miR-196b was increased in the exercised group by using RT-
qPCR, the interpretation of how this affects NF-«B signaling within our cohort of patients
remains less clear due to the limitations of sample availability, small sample size, and an
absence of healthy control subjects. Further, there was a variable response between patients
when examining total amounts of IxBo. protein after exercise. To further explore the effect of
exercise on this pathway, a larger cohort of myositis patients is needed.

We further explored how microRNAs influence the regulation of protein expression, since
microRNAs are known to influence gene expression through either transcriptional degrada-
tion or translational repression. We established that most the proteins regulated by micro-
RNAs (AK3, HIBADH) are localized within mitochondria and are suggestive of increased
mitochondrial biogenesis. This is in agreement with previous studies that have shown
increases in the aerobic respiration of exercised patients [11, 12]. Furthermore, the microRNAs
that were predicted to target these proteins were downregulated (Table 3), suggesting that
microRNAs regulate aerobic metabolism and could contribute to patients’ functional improve-
ments in aerobic respiration after endurance exercise [11]. The number of proteins altered by
exercise involved in inflammatory processes (Table 4 and Fig 4) was much lower than at the
transcript level. This is most likely due to limitations within our method for protein detection.
Many of the inflammatory proteins were not present as we used healthy myotubes as an inter-
nal standard. Despite this, we were able to detect a possible microRNA-mediated increase in
APEXI1, which has been previously shown to relieve oxidative stress during an acute bout of
exercise in skeletal muscle [25].

In summary, exercise induces changes at the microRNA level that target genes at both the
transcriptional and protein levels that are implicated in immune responses, aerobic metabo-
lism, and muscle atrophy (Fig 4). Interestingly, similar effects have been reported in healthy
individuals after exercise [7, 12, 21, 29], suggesting that myositis muscle may adapt to training
in a manner that is comparable to healthy muscle. This could suggest that inflammation is a
driving factor in disease pathogenesis; however, several studies have shown that inflammation
is poorly correlated with myositis muscle pathology [30-32], which indicates a role for non-
immune mechanisms in disease pathogenesis. Therefore, it is possible that exercise targets not
only inflammatory pathways, but also additional non-immune pathogenic pathways impli-
cated in the muscle. This is supported by studies showing that myositis patients on immuno-
suppressive therapies have impairments in aerobic capacity when compared to healthy age
and physical activity matched controls [11]. In this case, although exercise has similar effects
in both healthy and myositis muscle, exercise becomes therapeutic because it targets both
immune and non-immune mechanisms implicated in disease. However, further studies com-
paring exercise in healthy control and myositis muscle are needed to answer this question.

Because of the side effects of glucocorticoids, patients can only take small dosages that aim
to balance the treatment of symptoms with negative off-target effects associated with pro-
longed use. Because of these dosage restrictions, the dosage may be sufficient to clear systemic
inflammation that causes the infiltration of immune cells into the muscle, but it may not be
high enough to target NF-xB activation in the muscle effectively without producing severe side
effects such as muscle atrophy and wasting. Therefore, exercise may be able to target NF-kB in
the muscle better than the current doses of glucocorticoids can, and this improved targeting
could help to explain the overall improvement in patients after endurance exercise. Endurance
exercise may act as a glucocorticoid-sparing intervention, or it may supplement and work in
combination with glucocorticoid usage to permit patients to receive lower doses, reduce
unwanted side effects, and give maximal benefit for disease treatment. Further studies
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validating these microRNAs in a separate larger cohort of exercise patients are needed to deter-
mine significance and to further understand the molecular mechanisms that result in disease
improvement after exercise.
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