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Inclusion Body Myositis: A Degenerative Muscle Disease
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Abstract
Sporadic inclusion body myositis (s-IBM), the most common muscle disease of older
persons, is of unknown cause, and there is no enduring treatment. Abnormal accumulation
of intracellular multi-protein inclusions is a characteristic feature of the s-IBM phenotype,
and as such s-IBM can be considered a “conformational disorder,” caused by protein
unfolding/misfolding combined with the formation of inclusion bodies. Abnormal intracel-
lular accumulation of unfolded proteins may lead to their aggregation and inclusion body
formation.

The present article is focusing on the multiple proteins that are accumulated in the form of
aggregates within s-IBM muscle fibers, and it explores the most recent research advances
directed toward a better understanding of mechanisms causing their impaired degradation
and abnormal aggregation. We illustrate that, among other factors, abnormal misfolding,
accumulation and aggregation of proteins are associated with their inadequate disposal—
and these factors are combined with, and perhaps provoked by, an aging intracellular milieu.
Other concurrent and possibly provocative phenomena known within s-IBM muscle fibers
are: endoplasmic reticulum stress and unfolded protein response, mitochondrial abnormali-
ties, proteasome inhibition, lysosome abnormality and endodissolution. Together, these
appear to lead to the s-IBM-specific vacuolar degeneration, and muscle fiber atrophy,
concluding with muscle fiber death.
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INTRODUCTION
Sporadic inclusion body myositis (s-IBM) is the most common
muscle disease of persons 50 years and older. s-IBM muscle
tissue shares several phenotypic similarities with brain tissue of
Alzheimer’s disease (AD) and Parkinson’s disease Lewy bodies
(recently reviewed in 7). The progressive course of s-IBM leads
to pronounced muscle weakness and wasting, resulting in severe
disability, while brain function is unaffected. There is no enduring
treatment (7, 34, 40). Clinical features of s-IBM, pathologic
muscle diagnostic criteria and various treatment approaches
were recently summarized (40). Pathologically, two processes—
vacuolar degeneration and atrophy of muscle fibers, and mono-
nuclear cell inflammation—are characteristic features of s-IBM
muscle biopsies (5–7, 34). The vacuolar degeneration of muscle
fibers is accompanied by accumulations within muscle fibers,
mainly in their non-vacuolated cytoplasm, of ubiquitinated, multi-
protein aggregates containing amyloid-b (Ab), phosphorylated
tau (p-tau) in the form of paired helical filaments (PHFs) and

multiple other proteins (3, 5–7). The multi-protein, intra-muscle
fiber aggregates contain proteins in the b-pleated sheet conforma-
tion of amyloid (3, 5–7, 12, 69), indicating their unfolded/
misfolded status. Because accumulation of these intracellular
congophilic proteinaceous aggregates (inclusions) is a character-
istic feature of the s-IBM phenotype, s-IBM has been considered
a “conformational disorder” (5), characterized by the inclusion
bodies containing aggregated unfolded/misfolded proteins.
Unfolded/Misfolded proteins especially as oligomers are con-
sidered to be very toxic to cells (42, 61, 119). Intracellular abnor-
malities occurring in s-IBM muscle fibers are illustrated in
Figure 1. Ab and/or its toxic oligomers are considered to play a
key upstream pathogenic role in the s-IBM pathogenesis leading
to the demonstrated proteasome inhibition, oxidative stress, mito-
chondrial abnormalities and possibly to the inhibition of autoph-
agy (details in 6, 7, and below).

We have recently demonstrated that the activity of SIRT1,
an NAD-dependent deacetylase, is inhibited in s-IBM muscle
fibers—this might be the cause of the detrimental activation of
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NF-kB and contribute to other important abnormalities, including
Ab accumulation (78–80).

The present article focuses on the multiple proteins that are
accumulated in the form of aggregates within s-IBM muscle fibers,
and it explores the most recent research advances directed toward
better understanding of mechanisms causing their impaired degra-
dation and abnormal aggregation. We illustrate that, among other
factors, abnormal misfolding, accumulation and aggregation of
proteins are associated with their inadequate disposal—and these
factors are combined with, and perhaps provoked by, an aging
intracellular milieu. Together, these appear to lead to the s-IBM-
specific vacuolar degeneration and muscle fiber atrophy, conclud-
ing with muscle fiber death. The mechanism of muscle fiber death
in s-IBM is not well understood. There is compelling evidence that
apoptosis does not participate in this process (46, 65, 72). Also,
muscle fiber necrosis is very rare in s-IBM muscle biopsy. The
most likely process involves a recently described “autophagic cell
death” (62 and below.), a mechanism described much earlier by one
of us as the “endodissolusion” of muscle fibers (39).

The virtually identical complex of numerous abnormalities
occurring within the thousands of long multinucleated non-
mitotic muscle fibers of each patient, in a consistently preferen-
tial topographical distribution in the musculature, and the similar-
ity in essentially all s-IBM patients suggest a similar initial
driving mechanism (such as an integrated virus, self-replicating
protein or molecular deficiency or toxicity) that affects each indi-
vidual muscle fiber de novo. This may be occurring possibly: (i)
from an extra-muscular source; or (ii) triggered by spontaneous
disturbance of intra-fiber age-fragilized molecules. Each initiat-
ing mechanism presents a golden therapeutic opportunity, if

it can be identified. Alternatively, a step in the ensuing self-
perpetuating, currently invincible pathogenic cascade involving
the now-known molecular abnormalities discussed below might
prove easier to treat.

CHARACTERISTIC FEATURES OF
MULTI-PROTEIN AGGREGATES IN s-IBM
MUSCLE FIBERS
Multinucleated muscle fibers are usually several centimeters long.
On a given 10 mm section of an s-IBM muscle biopsy, the aggre-
gates are present mainly in vacuole-free regions of vacuolated
muscle fiber cytoplasm and in cytoplasm of “non-vacuolated”
fibers—the latter can have vacuoles located farther along the fiber.
Thus, in a given region of a fiber, aggregates seem to precede
vacuole formation. The vacuoles themselves usually do not contain
the IBM characteristic inclusions. The IBM autophagic vacuoles,
which typically do contain membranous debris, appear to be
lysosomal, and to be an end result of muscle fiber destruction
(Figure 2A–D). While some of the vacuoles appear “rimmed” by a
trichrome reddish material [that color indicating lipoprotein mem-
branous material (41)], often the vacuoles do not have an obvious
rim and appear “empty” (those must be differentiated from freez-
ing artifact holes). By electron microscopy, s-IBM vacuoles are
often filled with myelin-like bodies and other lysosomal-like struc-
tures (Figure 2E). The autophagic nature of s-IBM vacuoles is also
demonstrated by their increased immunoreactivity of some of
lysosomal enzymes (63, 100, and see below).

Intra-muscle fiber protein aggregates, identified by immunocy-
tochemical staining with an antibody recognizing a specific
protein accumulated within a given aggregate, are of two major
types: larger rounded “plaque-like” inclusions, containing Ab
(Figure 3A), and delicate squiggly inclusions containing p-tau
(Figure 3B). As both Ab and p-tau have a tendency to form
b-pleated sheet amyloid, accumulation of amyloid identified by
fluorescence-enhanced Congo red visualized through Texas red
filters (12) typically has a similar pattern as the Ab and p-tau
(Figure 3C). (Note: “Ab” refers to one specific protein, whereas
“amyloid” designates congophilic b-pleated sheet configuration of
any one of many proteins that can aggregate into this rather
insoluble, abnormal three-dimensional shape. We emphasize this
because these similar terms are sometimes confused in the litera-
ture.) Multiple or single foci of amyloid are evident within about
60%–80% of the s-IBM abnormal muscle fibers in a given trans-
verse section.

In our hands, positive crystal violet metachromasia staining,
which specifically identifies b-pleated sheet amyloid, is positive
within the same muscle fibers that contain Congo red-positive
amyloid (Figure 4). In hereditary IBM caused by the GNE gene
mutation, amyloid is usually not present, but in some older patients
it is within rare muscle fibers. In hereditary IBM caused by VCP
gene mutation, large clumps of amyloid deposits are present in
muscle fiber nuclei, and occasionally within the cytoplasm (1). In
myofibrillar myopathy, although abnormal muscle fibers were pre-
viously reported to contain congophilic amyloid by Congo red
staining (93), by our studies they are crystal violet negative (not
shown) and, therefore, presumably do not contain true amyloid in
b-pleated sheet conformation.
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Figure 1. Intracellular abnormalities present in sporadic inclusion body
myositis (s-IBM) muscle fibers. We propose that predisposing genes
and an aging muscle fiber milieu contribute to the muscle fiber abnor-
malities typical of s-IBM (details in the text). Decreased SIRT1 activity
might play a central, age-related role in the s-IBM pathogenic cascade.
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Figure 2. Light and electron microscopic (EM)
features of sporadic inclusion body myositis
vacuolated muscle fibers. Engel trichrome
staining demonstrating typical vacuolated
muscle fibers (A–D). On a given 10 mm
transverse section, vacuoles are of various
sizes; some contain floccular pinkish material,
and some appear empty. Only one vacuole, in
(C), appears to have a slight rim. (E)
Transmission EM shows a vacuole containing
inclusions consisting of numerous,
various-sized membranous whorls of
autophagosomal/lysosomal debris. A–D,
*2100; E, ¥50 000.

Figure 3. Immunohistochemistry and Congo red staining of sporadic
inclusion body myositis muscle fibers. Inclusions composed of
amyloid-b (Ab) appear as roundish, large plaque-like aggregates (A),
while those composed of phosphorylated tau (p-tau) are more delicate
and squiggly (B). Two different types of typical congophilic amyloid

deposits by Congo red staining, visualized through Texas red filters and
epifluorescence illumination (12); the fiber on the left has round, plaque-
like deposits, while the one at lower right, has more delicate, linear and
squiggly inclusions (C). A–C, ¥2300.
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PROTEINS AGGREGATED WITHIN s-IBM
MUSCLE FIBERS, AND THEIR PUTATIVE
PATHOGENIC ROLE: A BRIEF
DESCRIPTION
Both plaque-like and squiggly aggregates contain, in addition to
Ab and p-tau, several other proteins that also have the propensity to
unfold/misfold and form b-pleated sheet amyloid, for example,
a-synuclein (a-syn), presenilin1 and cellular prion protein (11), as
well as a number of other proteins having various functions and
significance including: (i) markers of oxidative stress; (ii) endo-
plasmic reticulum (ER) chaperones indicative of the unfolded
protein response (UPR); (iii) 26S proteasome components and the
proteasome shuttle protein p62; (iv) mutated ubiquitin (UBB+1); (v)
heat shock proteins; (vi) various transduction and transcription
factors; and (vii) several other proteins (Table 1 and references
therein, and reviewed in 3–7).

Below, we briefly describe properties of some of the proteins
that accumulate, concentrating on their possible pathogenic roles;
details of other accumulated proteins are available in the references
cited in Table 1.

Ab precursor protein (AbPP) and Ab

The first intracellular accumulation of Ab in any disease was iden-
tified in s-IBM muscle fibers (9)—an important role of intracellular
Ab toxicity was therefore postulated for s-IBM muscle and,

analogously, for AD neurons (2), in contrast to the then-widespread
view that Ab toxicity in AD is extracellular. Subsequently, intra-
neuronal Ab42 was demonstrated, and its intracellular toxicity also
proposed (50, and reviewed in 48). Several recent experimental
studies provide strong evidence that overexpression of AbPP and
its proteolytic product Ab plays an upstream role in the s-IBM
pathogenesis (reviewed in detail 6).

Increased accumulation of both AbPP and Ab are identifiable
early in s-IBM abnormal muscle fibers (10). In addition, there are
abnormalities of the AbPP processing machinery. For example,
BACE1 and BACE2, which are transmembrane b-secretases that
cleave AbPP at the N-terminal of Ab, as well as nicastrin and
presenilins, which are two of the components of the g-secretase
system that cleaves AbPP at the C-terminal of Ab to generate either
Ab40 or Ab42 (reviewed in 109), are increased in s-IBM muscle
fibers where they accumulate in aggregates colocalizing with Ab
(102, 104). By electron microscopy, there are large clusters of
densely (Figure 5B), or loosely packed 6–10 nm amyloid-like
fibrils, which are mainly composed of Ab42 (Figure 5E). In s-IBM
muscle fibers, there is preferential accumulation of the Ab42 frag-
ment (7, 106), which is known to be more hydrophobic and more
prone to self-association and oligomerization, and is much more
cytotoxic than Ab40 (42, 48, 111). There are also several factors
acting in s-IBM muscle fibers that might contribute to Ab produc-
tion, deposition and oligomerization (Table 1 and references
therein).

p-tau

As in AD brain, in s-IBM muscle fibers p-tau is accumulated
intracellularly in the form of congophilic aggregates of delicate
squiggly or linear inclusions (70 and Figure 3C), which by elec-
tron microscopy appear as PHFs (Figure 5A,D). Various antibod-
ies recognizing several epitopes of p-tau localize to those inclu-
sions by light microscopic immunohistochemistry (Figure 3B),
and by immunoelectron microscopy they are exclusively associ-
ated with the clusters of PHFs (Figure 5C,D) (70). Occasionally,
accumulations of p-tau occur within muscle fiber nuclei, but
most of the p-tau-immunoreactive inclusions are cytoplasmic
(Figure 6A,B). Several kinases known to phosphorylate tau are
also accumulated within s-IBM muscle fibers where they colocal-
ize with p-tau-positive inclusions. Those include extracellular
signal-regulated kinase (115), cyclin-dependent kinase 5 (116),
glycogen synthase kinase 3b (117) and casein kinase 1 (57).
s-IBM–PHFs also contain RNA and the RNA-binding protein
survival motor neuron, and both were proposed to contribute to
PHF formation (25). New studies related to neurodegeneration
strongly suggest that accumulation of p-tau could be cytotoxic to
neurons (reviewed in 53, 56, 96). In contrast to Ab exerting an
intra-muscle fiber cytotoxicity, there is no direct evidence yet that
p-tau might be toxic to s-IBM muscle fibers; however, this possi-
bility should be explored. Conceivably, the large masses of aggre-
gated PHFs composed of p-tau (Figures 3B and 5C,D) could
severely impair muscle fiber integrity and function by: (i) physi-
cally disturbing contraction; (ii) hypothetical invisible tau oligo-
mers sticking to and impairing various normal cellular compo-
nents such as mitochondria and ER; and (iii) depriving the
muscle fiber of its normal tau function.

Figure 4. Congo red and crystal violet stainings of the same sporadic
inclusion body myositis muscle fiber. Congo red staining, visualized
through Texas red filters and epifluorescence illumination (A), shows a
small congophilic amyloid deposit at the top right, and several deposits
below the vacuole in the lower part of the fiber. Crystal violet staining of
the same fiber, but several sections away, illustrates a large pink amyloid
deposit at the top, and small deposits at the bottom of the fiber. As the
sections are not closely adjacent, the fiber section in (B) does not have a
vacuole in the lower part. A and B, ¥2100.
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Table 1. Protein components of the amyloid-b (Ab) and phosphorylated tau (p-tau) intracellular inclusions and their possible functions in sporadic
inclusion body myositis muscle fibers, as identified by immunohistochemical and immuno-electron microscopical studies (see references therein).
Abbreviations: NK = not known; Ab = amyloid-b; BACE = b-amyloid-converting enzyme; UBCH7 = ubiquitin conjugating enzyme H7; RNF5 = RING
finger protein 5; HSP = heat-shock protein; CHIP = carboxyl terminus of HSP70- interacting protein; BiP/GRP78 = immunoglobulin heavy chain-binding
protein/glucose-regulated protein 78; ERP72 = endoplasmic reticulum protein 72 kDa; HERP = homocysteine-induced endoplasmic reticulum protein;
ERK = extracellular signal-regulated kinase; CDK5 = cyclin-dependent kinase 5; GSK-3b = glycogen synthase kinase 3b; SOD = superoxide dismutase;
NF-kB = nuclear factor- kB; Ref1 = redox factor 1; NOS = nitric oxide synthase; SMN = survival motor-neuron protein; PPARg = peroxisome proliferator-
activated receptorg; VCP = valosin containing protein; TDP-43 = TAR DNA binding protein; LC3 = microtubule-associated protein 1 light chain 3;
RNA = ribonucleic acid.

Ab-aggregates p-tau aggregates References

Light microscopy Electron microscopy Light microscopy Electron microscopy

Morphology, typical Plaque-like, rounded
various size
inclusions

6–10 nm filaments,
floccular and
amorphous material

Squiggly 15–21 nm
paired-helical
filaments

(9, 10, 13, 70)

b-Pleated sheet amyloid (Congo-red+,
crystal violet+)

+ + (4, 5, 12, 69)

Proteins, various
Aggregate-prone proteins

Ab + + - - (9, 10)
a-Synuclein + + - - (16, 85)
p-Tau - - + + (13, 70)
Prion protein, cellular + + + + (11)

AbPP processing/Ab deposition
BACE1 and BACE2 + + - - (102, 104)
Nicastrin + + + + (105)
Presenilin1 + + + + (15)
Neprilysin + + NK NK (28)
NOGO B + + - - (123)
Cystatin C + + - - (103)
Transglutaminase 1 & 2 + NK NK NK (30)

Ubiquitin–proteasome system
Ubiquitin + + + + (8)
Proteasome subunits + + + + (45)
Parkin + + NK NK (85)
UbcH7 + + - - (85)
UBB+1 + + + + (44)
RNF5 + NK - NK (35)

Heat shock proteins
Hsp70 and its cofactors + + + + (84)
Hsp40 + + + + (84)
CHIP + + + + (Paciello and

Askanas,
unpub. obs.)

ER chaperones
BiP/GRP78 + + - - (107)
GRP94 + + - - (107)
Calnexin + + - - (107)
Calreticulin + + - - (107)
ERP72 + + - - (107)
HERP + + - - (76)

Signal transduction components
ERK - - + + (115)
CDK5 - - + + (116)
GSK-3b NK NK + + (117)
Casein kinase 1a NK NK + NK (57)

Markers of oxidative stress
Nitrotyrosine + + + + (125)
SOD1 NK NK NK NK (14)
Malondialdehyde + + + + (22)
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a-Syn and parkin

a-Syn has been implicated in the pathogenesis of several neurode-
generative diseases (18, 21, 32), and its overexpression has been
associated with oxidative stress, impairment of proteasome and
mitochondrial functions and other abnormalities (18, 32, 54, 66).
Several years ago, we showed immunocytochemically that a-syn is
accumulated in s-IBM muscle fibers in aggregates colocalizing
with Ab (16). More recently, we have shown by immunoblots that
in s-IBM human muscle fibers, the 22 kDa form of a-syn, which is
O-glycosylated, is more expressed than its native 16 kDa form
(85). The 22 kDa form was shown by others to be a target of
ubiquitination by parkin (95). The preferential increase of the
22 kDa O-glycosylated form of a-syn in s-IBM muscle fibers
might be caused by proteasome inhibition, which has been demon-
strated in s-IBM fibers (45 and see below). a-Syn is degraded by
both the 26S proteasome and by lysosomal autophagy (68, 113).
[Whether inhibition of lysosomal activity, as recently demonstrated
in s-IBM muscle fibers (81 and see below), also contributes to
a-syn increase, and accumulation is not yet known.]

Accordingly, a putative toxicity of a-syn, in addition to the dem-
onstrated cytotoxicity of Ab, may contribute to the muscle fiber
degeneration in s-IBM. Such toxicity might not be related to the
a-syn and Ab in the insoluble aggregates, but rather to an intracel-
lular toxicity of their soluble oligomers and protofibrils (5, 85, 92).

Parkin is an E3–ubiquitin ligase that ubiquitinates a-syn (91).
Parkin is increased in s-IBM muscle fibers, where it accumulates in
the form of intra-muscle fiber aggregates, which closely colocalize
with a-syn (85 and Figure 7A,B). In brains of sporadic Parkinson’s
disease patients, parkin and a-syn accumulate in Lewy bodies,
which are considered aggresomes (91). Parkin, in addition to
ubiquitinating several proteins, is also considered to protect cells
against toxicity induced by a-syn, ER and other stresses, perhaps

by helping to aggregate toxic a-syn oligomers and promote their
degradation (55, 99). Accordingly, we propose that increase of
parkin in s-IBM muscle fibers may represent a cellular defense
mechanism against toxicity induced by a-syn, ER and other
stresses. However, the 2.7-fold increase of parkin in s-IBM muscle
fibers might not be sufficient to overcome a sixfold increase of
a-syn (85), or to protect against other continuing stresses.

Accumulation of mutated ubiquitin (UBB+1)

Accumulation of UBB+1 within s-IBM muscle fibers reflects the
phenomenon of “molecular misreading.” This term designates
acquired, non-DNA-encoded dinucleotide deletions occurring
within mRNAs, resulting in production of potentially toxic mutant
proteins (recently reviewed in 101). The aberrant transcripts are
formed during or after transcription, and they can be translated
from the deletion onward into the +1 reading frame to produce
abnormal proteins, that is, mutant ubiquitin, termed UBB+1 (101).
UBB+1 protein was shown accumulated in the plaques (containing
Ab) and neurofibrillary tangles (containing p-tau) of AD brain
(101). It was also found in brains of other neurodegenerative disor-
ders in which inhibition of the proteasome has been proposed to
play a pathogenetic role (101). UBB+1 itself can become ubiquiti-
nated, and that form inhibits the proteasome (101). Accordingly,
accumulation of UBB+1 was proposed to be a marker for proteaso-
mal dysfunction in brain (101).

In s-IBM muscle fibers, UBB+1 is accumulated in the form of
aggregates, which can also contain wild-type ubiquitin, Ab and
p-tau (44). Those associations raise a possibility that UBB+1 might
promote formation of those aggregates.

Our study showing accumulation of UBB+1 in muscle fibers of
s-IBM demonstrated for the first time that molecular misreading
can occur in diseased human muscle (44). We proposed that the

Table 1. Continued.

Ab-aggregates p-tau aggregates References

Light microscopy Electron microscopy Light microscopy Electron microscopy

a1- Antichymotrypsin + NK NK NK (19)
NFkB NK NK + + (126)
Ref-1 + + + + (26)
iNOS, eNOS - - + + (125)
Seleno-glutathione peroxidase-1 NK NK NK NK (24)

Transcription components
RNA polymeraseII - - + + (118)
RNA - NK + NK (25)
SMN - - + + (23)
c-Jun + + + + (27)
NFkB + NK + + (126)
Ref-1 + + + + (26)
PPARg + + NK - (77)

Other proteins
Apolipoprotein E + + + + (71)
Myostatin + + - - (121)
VCP NK NK NK NK (112)
TDP-43 NK NK NK NK (64, 114)
LC3 + NK NK NK (67)
p62 - - + + (81)
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Figure 5. Transmission and immuno-electron microscopy (EM) of spo-
radic inclusion body myositis (s-IBM) abnormal muscle fibers. (A,B)
Transmission EM. (A) A bundle of typical s-IBM paired helical filaments.
(B) A tightly packed cluster of 6–10 nm amyloid-like filaments. (C–E)
Immuno-EM. (C) Horseradish peroxidase immunolocalization of phos-
phorylated tau (p-tau) using AT8 antibody, shows that only a cluster of
paired helical filaments (PHFs) in the upper left is immunostained, while

the unaffected cytoplasm (below) is not immunoreactive. (D) Gold-
immuno-EM using SMI31 antibody, shows gold particles, indicating
p-tau, only on the cluster of PHFs, while the unaffected cytoplasm
(below) does not have any gold particles. (E) Gold-immuno-EM with a
specific antibody recognizing Ab42 showing gold particles on 6–10 nm
amyloid-like filaments. A, ¥83 000; B,D,C ¥50 000; E, ¥65 000.

Figure 6. Immunohistochemistry of
phosphorylated tau (p-tau) in sporadic inclusion
body myositis. (A) Several bundles of paired
helical filaments immunostained with SMI-31
antibody, which recognizes p-tau, are present
in an abnormal muscle fiber. (B) The same
preparation as in (A) counterstained with a
nuclei-marker Hoechst, illustrates that most of
the p-tau immunoreactive aggregates are not
associated with the nuclei. A,B, ¥1250.
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aging cellular environment of s-IBM muscle fibers, combined
with factors such as oxidative stress and perhaps other detrimental
molecular events, leads to abnormal production and accumulation
of UBB+1 (44), which might contribute to proteasome inhibition
(44, 45 and see below). Moreover, if those aspects have led to the
one example of molecular misreading we tested for, there may
be yet undiscovered, and possibly pathogenic, examples of similar
mutations on other proteins.

Accumulation of other proteins

The scope of this article does not permit a detailed description of
several other proteins aggregated in s-IBM muscle fibers that are
illustrated and referenced in Table 1, such as myostatin, which was
recently discussed (7, 121).

POSSIBLE MECHANISMS UNDERLYING
PROTEIN CROWDING, MISFOLDING
AND AGGREGATION IN s-IBM
MUSCLE FIBERS

General comments regarding protein misfolding
and aggregation

In general, protein aggregation is considered to be caused by
binding of partly unfolded or misfolded polypeptides induced by
interaction between their inappropriately exposed hydrophobic sur-
faces (38, 42, 61, 94). Those interactions are highly specific (87).
Normal cellular proteins folded correctly are soluble, structural
or associated with cell membranes (reviewed in 94). In s-IBM,
insoluble aggregates of improperly folded proteins are usually
cytoplasmic, occasionally nuclear. Although fully formed amyloid
fibrils, which are insoluble, were previously considered to be cyto-
toxic, they may not be. There is current experimental evidence that
pre-amyloid oligomeric complexes or aggregates, either diffuse or

in a protofibril stage, can be very cytotoxic (38, 42, 49). Unfolding
or misfolding of proteins can occur in vivo and in vitro under
several circumstances, including macromolecular crowding, oxi-
dative stress, impaired disposal, exposure to toxins and “aging”
(38, 42, 47, 94). Increased transcription of several proteins and
markers of oxidative stress occur in s-IBM muscle fibers (reviewed
in 3–7)—this mechanism, plus impaired disposal of proteins (see
below) might contribute to unfolding or misfolding of IBM
proteins. Aggregations of proteins into insoluble intracellular
complexes/inclusion bodies have been proposed to be importantly
related to several neurodegenerative disorders, including AD,
Parkinson’s disease, Huntington disease and amyotrophic lateral
sclerosis (reviewed in 21, 29, 68, 94, 119).

Cellular mechanisms to eliminate
misfolded/unfolded proteins

To eliminate misfolded proteins, a cell recruits mainly the follow-
ing mechanisms: (i) protein refolding through the ER chaperones;
(ii) protein refolding through heat shock proteins; (iii) protein deg-
radation through the 26S ubiquitin–proteasome system (UPS); and
(iv) protein degradation through autophagy, which involves forma-
tion of autophagosomes, their fusion with lysosomes and degrada-
tion of proteins by the lysosomal catabolic enzymes (reviewed in
detail in 31, 33, 43, 68, 73, 82, 86, 128, 129). Below we describe
abnormalities of these systems in s-IBM muscle fibers.

ER Stress (ERS) and the UPR

The ER is an intracellular compartment having a critical role in the
processing, folding and exporting of newly synthesized proteins
into the secretory pathway (reviewed in 128, 129). In the ER,
molecular chaperones are required to assure proper folding of
unfolded or misfolded proteins (128, 129). Unfolded proteins accu-
mulating in the ER cause ERS (128, 129). This elicits the UPR, a
functional mechanism by which a cell attempts to protect itself
against ERS (128, 129). In s-IBM muscle fibers, we have previ-
ously reported evidence of ERS and the UPR (76, 107). As mis-
folded proteins continue to accumulate and aggregate in s-IBM
muscle fibers, we propose that in them the UPR is not adequate,
because it is overwhelmed and/or impaired by the misfolded pro-
teins. Our most recent studies have shown that ERS might be detri-
mental to the muscle fiber because, in cultured normal human
muscle fibers, experimentally produced ERS: (i) induced myosta-
tin, a negative regulator of muscle mass, through an NF-kB-related
mechanism; and (ii) decreased SIRT1 deacetylase activity (78, 79,
reviewed in detail in 7). Accordingly, ERS may importantly con-
tribute to the s-IBM pathogenesis.

Heat shock proteins (HSPs) and other chaperones

Chaperones of the HSP70 family constitute a very important group
of molecular chaperones that play a role in protein folding and
refolding, and disaggregation of partially unfolded proteins
(reviewed in 43, 86). Their induction occurs in response to detri-
mental cellular conditions causing unfolded proteins. HSP70 binds
exposed hydrophobic regions in proteins, preventing their aggrega-
tion. HSP70 function depends on ATP binding and hydrolysis, and

Figure 7. Immunohistochemistry of a-synuclein (a-syn) and parkin in
sporadic inclusion body myositis (s-IBM). (A,B) While there is a close
localization of a-syn- and parkin-immunoreactive aggregates in an s-IBM
vacuolated muscle fiber, a-syn appears to be increased somewhat more
diffusely (this could be a real difference in distribution or an effect of
different sensitivities of two antibodies). A,B, ¥2100.
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it is linked to HSP70 cofactors. HSP40 increases the HSP70
folding function by enhancing ATPase activity of HSP70 (43, 86).

s-IBM-vacuolated muscle fibers and some non-vacuolated
fibers (at a given cross-sectional level) have strongly HSP70-
immunoreactive inclusions, which colocalize with Ab and p-tau
immunoreactive inclusions (84 and Figure 8A,B). By immunob-
lots, HSP70 is 4.5-fold increased as compared to control muscle
samples, and it associates with Ab by immunoprecipitation (84 and
Figure 8C,D). Accordingly, HSP70 may participate in Ab refold-
ing, and may facilitate the refolding of other proteins in s-IBM
muscle fibers.

aB-crystallin (aBC) was shown to be accumulated in s-IBM
abnormal muscle fibers and in several other muscle diseases (17).
aBC specifically recognizes and stabilizes proteins that have a
propensity to aggregate and precipitate (36, 98). In cell-free
systems, aBC binds Ab, prevents Ab aggregation and prevents Ab
spontaneous fibril formation and fibril growth (88). However, when
applied to cultured rat neurons extracellularly concomitantly with
Ab, aBC increases Ab cytotoxicity (97), possibly because of an
aBC influence in maintaining Ab in its soluble oligomeric, highly
cytotoxic form (88, 97). Our study (122) provided a novel demon-
stration that aBC physically associates with AbPP and Ab
oligomers both in s-IBM-biopsied muscle fibers and in AbPP-
overexpressing cultured human muscle fibers (122). We suggested
that the binding of aBC to Ab oligomers might be detrimental by
retarding and diminishing their fibrillization and aggregation into
visible, putatively nontoxic aggregates, thereby prolonging their
existence as toxic oligomers (122).

The 26S proteasome

The UPS is a major degradation mechanism for normal, short-lived
proteins, and for misfolded proteins exported from the ER through
a ubiquitin-mediated ATP-independent process (31, 82, 110). The
26S proteasome, composed of a catalytic 20S core and a 19S regu-
latory complex, is a ~700 kDa multi-subunit protease complex
present in the cytoplasm and nucleus of eukaryotic cells.

In s-IBM muscle fibers, we have demonstrated reduced activity
of the three major proteasomal proteolytic enzymes (45), which
probably contributes strongly to the abnormal accumulation of the

ubiquitinated proteins aggregated in s-IBM muscle fibers. Addi-
tional evidence of proteasome impairment in s-IBM muscle fibers
that we have described is formation of aggresomes (45), which
experimentally form when proteasome function is inhibited (60).
Whether aggresomes, in general, contribute to cellular death or
protect cells from toxic effects of misfolded proteins remains
uncertain. We also demonstrated that the AbPP/Ab/proteasome
interrelationship appears to be important in inducing proteasome
abnormalities in s-IBM muscle fibers because: (i) Ab colocalized
with proteasome subunits at the light-microscopy level and they
were both associated electron microscopically with the same struc-
tures; (ii) there was a physical association of Ab/AbPP and protea-
some protein by immunoprecipitation studies; and (iii) proteasome
activity was inhibited in cultured human muscle fibers overexpress-
ing Ab/AbPP (45). Other factors present in s-IBM muscle fibers
that might contribute to inhibiting proteasome function include: an
aging muscle fiber environment; protein over-crowding; oxidative
stress; and accumulated p-tau, a-syn and UBB+1 (reviewed in 6,
7)—all of these have been shown to be capable of inhibiting protea-
some activity in other systems (32, 58, 66, 82, 101). The possible
factors leading to proteasome inhibition in s-IBM muscle fibers are
illustrated in Table 1 (6). Whether proteasomal abnormalities par-
ticipate in antigen presentation and T-cell inflammation in s-IBM
muscle fibers remains to be studied.

Autophagy

“Autophagy” is used to describe catabolism of proteins and cellular
components, such as mitochondria and other membranous struc-
tures, through lysosomal degradation (reviewed in 33, 68, 73, 75,
120). Autophagy has been closely linked to the protein quality
control system. Disturbance of autophagy has been associated with
several neurodegenerative disorders, including AD, Parkinson’s
and Huntington diseases (33, 68, 73, 75, 89, 120). The lysosome is
an intracellular organelle whose main function is degradation and
recycling of proteins originating both intracellularly and extracel-
lularly (review in 33, 68, 73, 75, 120). Because of the ability of
autophagy to remove unwanted or damaged proteins, this system,
together with the 26S proteasome, constitutes the most important
mechanism of unwanted protein disposal. The process of

Figure 8. Heat shock protein 70 (HSP70) in sporadic inclusion body
myositis (s-IBM). (A,B) A close immuno-colocalization of HSP70 and
amyloid-b (Ab)-immunoreactive aggregates in an abnormal muscle fiber.
Both ¥ 700. (C) Immunoblot showing that HSp70 is more than 4.5-fold
increased in muscle of s-IBM as compared to normal controls. (D) Immu-

noprecipitation; s-IBM and control muscle biopsies were immunopre-
cipitated with an antibody against Ab and the membrane was then
immunoprobed with an antibody against HSP70. In s-IBM, HSP70 physi-
cally associates with Ab, while control is negative.
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autophagy is generally divided into three different types: macroau-
tophagy, microautophagy and chaperone-mediated autophagy (33,
37, 68, 73), all three culminating in the final step of degradation of
proteins by lysosomes. Macroautophagy relates to the formation
and maturation of autophagosomes, which in mammalian cells are
identified on immunoblots by the presence of LC3-II protein (75,
120). Autophagosomes carry the proteins destined for degradation
by lysosomes. After an autophagosome fuses with the lysosomal
membrane, it disposes proteins into the lysosome, and then the final
degradation of proteins by lysosomal enzymes occurs (33, 68, 73,
75, 120). In normal cells, the autophagosomal–lysosomal system
(A-L-S) functions properly, and it assures proper protein quality
and quantity. When misfolded or damage proteins accumulate and
increase in a cell, either because of the proteasome inhibition,
oxidative stress or other stressors, the need for autophagic degrada-
tion increases, which is followed by the increased formation of
autophagosomes, often leading to the formation of autophagic
vacuoles (37, 62, 75). This phenomenon is dramatically increased
when the lysosomal activity is partially impaired, or the amount
of material to be degraded exceeds lysosomal capabilities. s-IBM
vacuoles are considered autophagic, as they often contain: (i) lyso-
somal membranous debris by light and electron microscopy
(Figure 2A–E), which is considered a result of partial damage
within a still-living muscle fiber; and (ii) increased immunoreactiv-
ity of some of the lysosomal enzymes (63, 100). In contrast to
neurodegenerative disorders in which the role of autophagy has
been intensively studied (33, 68, 73, 75, 89, 120), relatively little is
known about how this process might be contributing to protein
aggregation in s-IBM muscle fibers. And, the A-L-S function and
formation, indicated by autophagosome maturation and lysosomal
activity, have not been adequately studied in s-IBM, to our knowl-
edge. Our most recent studies showed that in s-IBM muscle fibers,
in contrast to controls: (i) LC3-II, which indicates increased
autophagosome formation and maturation (75, 120), becomes
evident (81); and (ii) the activity of lysosomal enzyme cathepsin D
was decreased 50% despite actual increase of its protein (81).
Together, these data suggest that in s-IBM muscle fibers, there is:
(i) impaired autophagy by reducing some key lysosomal functions;
and (ii) an attempted compensation by excessive proliferation of
lysosomes containing acid phosphatase (evident histochemically)
and probably other hydrolytic enzymes that spill into the cytoplasm
and gradually dissolve cellular contents, a phenomenon termed
“endodissolution” (39).

In addition, p62/sequestosome, a ubiquitin-binding protein
shuttling ubiquitinated proteins for their degradation by both pro-
teasome and A-L-S, is accumulated in aggregates and increased
by immunoblots in s-IBM muscle fibers (81, Nogalska et al,
unpub. obs.). Immunopositive p62 inclusions were demonstrated
in brains of neurodegenerative disorders (37, 124, 127). Experi-
mentally, when functions of either the 26S proteasome or lysos-
omes are inhibited, LC3-II, a marker of autophagosome matura-
tion, and p62-immunoreactive inclusions are present (20, 124,
127). The accumulation of p62-immunopositive inclusions in
s-IBM muscle fibers suggests that p62 is recruited to carry ubiq-
uitinated proteins for degradation, but its effort is not successful
because of impaired lysosomal and proteasomal functions. s-IBM
muscle appears to suffer a “double-hit” crippling protein dis-
posal, namely inhibition of both the proteasome and impaired
autophagy.

Muscle fiber aging

s-IBM typically becomes clinically manifest in patients after age
50, and more often in their 60s and 70s. Among sporadic “inflam-
matory myopathy” patients, the described specific degenerative
accumulations and aggregations of proteins within muscle fibers
occur only in s-IBM, not in polymyositis or dermatomyositis. We
suggest that these accumulations are related to an aging-based
degenerative pathogenic cascade. For example, cellular aging was
shown to promote accumulation of abnormal proteins and slow the
degradation rate of normal and abnormal proteins (33, 51, 52, 59,
108). Playing a critical role in cellular aging is unsatisfactory
removal of damaged cellular components caused by various
factors, including oxidative stress and other stressors (33, 108).
Understanding the interrelated phenomena of aging-related protein
misfolding and aggregation of proteins may clarify mechanisms
relevant to s-IBM. In the cellular milieu of the aging muscle fiber,
there may be diminished homeostatic mechanisms caused by
either: (i) diminished expression of “youthful” genes encoding
beneficial cellular factors; or (ii) overexpression of yet unknown
“aging” genes encoding toxic cellular factors. Premature aging of
s-IBM myoblasts in culture has recently been demonstrated (74).
Several aspects of aging of human muscle, for example, those
associated with mitochondrial abnormalities, such as ragged-red
fibers, cytochrome oxidase-negative muscle fibers and multiple
mitochondrial DNA deletions, are more common in s-IBM muscle
(83, 90). Aging changes within muscle mitochondria, or elsewhere
in the muscle fiber, may predispose to the s-IBM mitochondrial
abnormalities, potentially provoking a vicious circle between mito-
chondrial malfunctions, oxidative stress and protein aggregation/
accumulation.

CONCLUSION
We have presented our current understanding of mechanisms
leading to the abnormal protein unfolding/misfolding and aggrega-
tion within s-IBM muscle fibers, and their putative cytotoxic con-
sequences. Improving the impaired protein disposal machinery and
a better understanding of the mechanisms and consequences of
human muscle fiber aging might provide new avenues for therapy
in s-IBM.
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