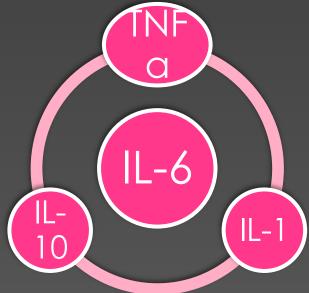
Muscle Strengthening – Lessons learnt from the Children!

Sue Maillard Clinical Specialist Physiotherapist in Paediatric Rheumatology Great Ormond Street Hospital London. UK

Juvenile Dermatomyositis
Dermatomyositis
Polymyositis

Inclusion Body Myositis

Causes of Muscle Weakness

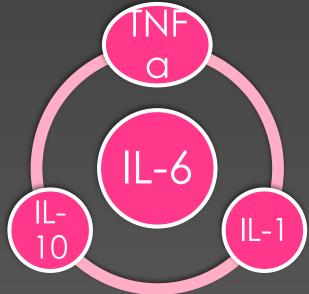

Inflammation

> Acute onset

De-conditioning

- Muscles loose strength within 24-48 hours
- Maximum muscle strength lost in 1st 6 weeks
- > Muscles only recover with use.

Why Weaker Muscles? Pain ▶ Inflammation Biomechanical Reduced movement Reduced activity General 'un-wellness' Muscle imbalance Disease activity **CYTOKINES**



Petersen AM J physiol & pharm 2006; Mathur N Med of Inflamm 2008

Biomechanical Changes

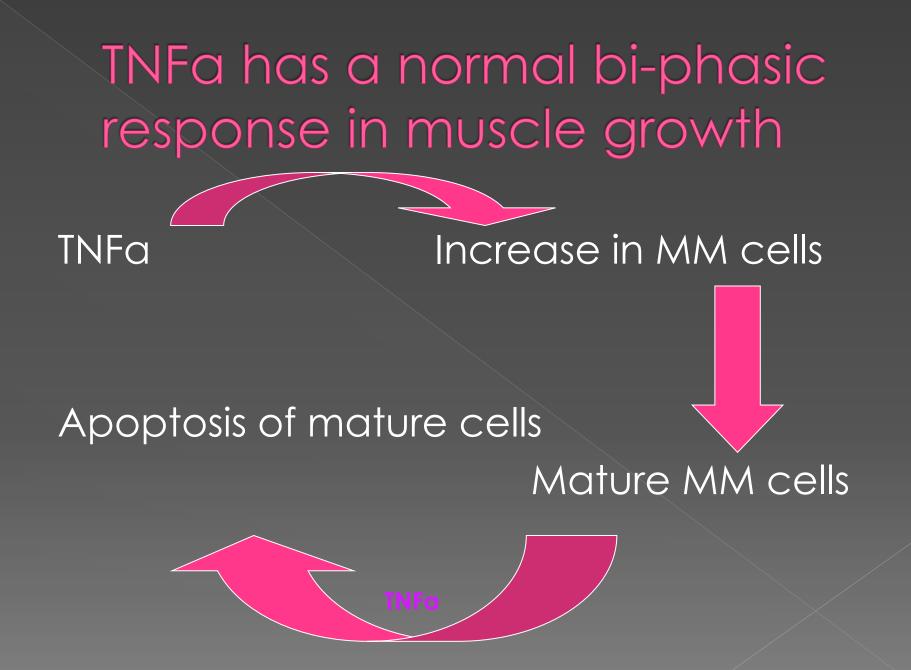
Inflammation is patchy Muscle imbalance Strong muscles get stronger > Weak muscles get weaker Abnormal forces through joints Joint instability Fatigue

Why Weaker Muscles? Pain ▶ Inflammation Biomechanical Reduced movement Reduced activity General 'un-wellness' Muscle imbalance Disease activity

Petersen AM J physiol & pharm 2006; Mathur N Med of Inflamm 2008

Inhibits contractile function

- Reduced contractile force
- Blunts muscle response to calcium activation


Causes muscle atrophy

- Increases proteolysis
- Inhibits insulin affect upon muscles
- Blocks glycogen uptake in muscles

Chronic increase:

- Inhibits skeletal muscle synthesis
- Causes skeletal muscle myopathy

Yi-Ping Li and Michael B Reid; Current Opinion in Rheumatology 2001 Respiratory Research 2001

IL-6

Pro-inflammatory cytokine

Normally produced by working muscles

Controlled by:

> TYPE OF EXERCISE

- Eccentric > Concentric
- Endurance > resistance
- Dependent on effort and time
- > Glycogen availability
- > Normal response

Metabolism control

- Glucose homeostasis
 - Insulin-stimulated glucose disposal
- ► Lypolysis
 - Fatty acid oxidation

Pederson BK J appl physiol 103; 2007; Winkelmann C; AACN Clinical Issues, 2004

CYTOKINES and EXERCISE

- Excessive eccentric, endurance and strenuous exercise causes an increase in cytokine production:
 - \rightarrow Local muscle inflammation \rightarrow Local muscle damage \rightarrow degrading necrotising mm cells \rightarrow

Requires *†*Glycogen supplies

Moderate progressive resisted exercise programmes:
Reduce normal production of:

- > IL-6
- > TNFa

Improves the bodies homeostasis abilities
 Efficient use of glycogen and Lipolysis
 Less muscle inflammation (lower CRP)

(Kasapis C, J of Am Coll Cardiology 45; 2005)

AND THEREFORE ARE ANTI-INFLAMMATORY

Greiwe JS; FASEB J 2001, Castaneda C; Am J Kidney Dis. 2004. Gielen S; J Am Coll Cardiol. 2003 Perdersen BK; Pflugers Arch. 2003. Starkie R; FASEB J 2003

<u>Muscle Repair</u>

Satellite Cells

- Muscle precursor cells
- > Replace muscle cells
- Increase number of muscle cells
- > Form new fibres or repair damaged segments
- > Stimulated by exercise

Daily exercise after damage encourages repair.

> Finite number

Max no. @ birth, start to \downarrow from 9 years

Common Pattern of Weakness in Most Conditions

Hip Abductors
Hip Extensors
Inner range Quads
Plantar flexors

Causes of Fatigue

Inflammation

Active disease

- Muscle weakness
- Specific muscle fatigue
- Deconditioning
- Reduced Aerobic fitness

Emotional factors

Psychological factors

- > Perception of illness
- Perception of normal fatigue levels

To Explore the Use of the Paediatric QoL Subjective Questionnaire to Assess levels of Fatigue in children with JDM A. Hasson et al – abstract published

- Parent reported PedsQL Fatigue did not correlate with disease activity
- Childs PedsQL Fatigue did correlate with disease activity
- FVAS correlated with disease activity
- There were a number of patients who reported high level of fatigue with no objective markers of disease activity
 - Need to consider psychological factors

Your Strength and Recovery

Maximise what you can

- > Strength
- Stamina specific and general
- > Energy levels
- > Pacing

Oping something is better than nothing!

Simple vs Complex Exercise

- Simple Exercise (Correct biomechanics)
 - > Hip abduction
 - > Straight leg raise etc

Complex exercise (General fitness)

- > Walking
- > Running
- Football

How to train muscles

- Specific muscles and Aerobic Training
 High repetitions
 - > Less than 15 reps is not effective, ideal is 30 reps
- Low weights (0.5 5kg)
- Regular
 - > 2x week better than 1x week, 4x week is best
- Regular progression
 - Daily/weekly is better than monthly

Faigenbaum AD, Rhea MR, Avery D, Hostler D and American College of Paediatrics

Home Management Programme

Easy to do at home Progressive • Functional ? Not too long Once a day

Suggested HEP

Straight Leg raises
Hip Abductors (backward banana's)
Hip Extensors
Tiptoes 1 leg
? Core central stability

Knee Straightening

- Vastus Medialis

- Main protector of the knee
- Only extends the last 10 -20' of extension
- The most important muscle for standing and walking straight.
- Easily inhibited
- Straight Leg Raise = most effective exercise

Hip Abduction

Vital to stabilise the pelvis especially during walking

- Vital for core central stability
- Positioning is vital
 - Slight hip flexion enables Psoas to take over
 - Gluteus medius needs slight extension at hip
 - > External rotation (turning hip out) also inhibits Psoas

Hip Extensors

Power muscle for walking and climbing stairs

- Knee extended
 - Hamstrings and gluteus maximus
- Knee Flexed
 - > Gluteus maximus only

Plantar Flexors (Tiptoes)

Propulsion during walking and running
Full strength is single leg stance

- Full stamina
 - > 10 reps 1 leg full ROM

It is important that the muscles increase: STAMINA STRENGTH

However these are lost after 6 weeks of no exercising! (De-conditioning)

If the strength training is maintained long enough (over 4 months) then the memory of the strength remains and regaining lost strength and stamina is easier.

Aerobic Fitness

- Specific exercises high reps with weights
- Sport (care with biomechanics)
 - > Reduced WB
 - Cycling / swimming / horse riding / rowing etc
 - > Full WB
 - Walking (power) /Running / football / basket ball etc

Sport

FUN
Varied
Any Sport

Trampolining?

Pain afterwards if common and means you need to do more NOT LESS!

NEED TO BE FIT FOR THE SPORT

Table tennis vs Rugby

Therapy Principals

• Progressive, resisted exercises to regain: > muscle balance > control of joint biomechanics Balance and proprioception education • Functional activities Increase generalised stamina Increased confidence with own physical abilities:

- In rehabilitation
- With family

Maillard et al 2004, 2007, 2008, 2009, 2010; Engelbert 2003; Fatoye 2011

Thank You For Listening And GOOD